Automated Software Vulnerability Detection Based on Hybrid Neural Network

نویسندگان

چکیده

Vulnerabilities threaten the security of information systems. It is crucial to detect and patch vulnerabilities before attacks happen. However, existing vulnerability detection methods suffer from long-term dependency, out vocabulary, bias towards global features or local features, coarse granularity. This paper proposes an automatic framework in source code based on a hybrid neural network. First, inputs are transformed into intermediate representation with explicit structure using lower level virtual machine (LLVM IR) backward program slicing. After transformation, size samples vocabulary significantly reduced. A network model then applied extract high-level vulnerability, which learns both convolutional networks (CNNs) recurrent (RNNs). The former learn such as buffer size. Furthermore, latter utilized data dependency. extracted made up concatenated outputs CNN RNN. Experiments performed validate our method. results show that proposed method achieves excellent F1-scores 98.6% accuracy 99.0% SARD dataset. outperforms state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated software vulnerability detection with machine learning

Thousands of security vulnerabilities are discovered in production software each year, either reported publicly to the Common Vulnerabilities and Exposures database or discovered internally in proprietary code. Vulnerabilities often manifest themselves in subtle ways that are not obvious to code reviewers or the developers themselves. With the wealth of open source code available for analysis, ...

متن کامل

A New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort

Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software p...

متن کامل

Neural Network Based Protection of Software Defined Network Controller against Distributed Denial of Service Attacks

Software Defined Network (SDN) is a new architecture for network management and its main concept is centralizing network management in the network control level that has an overview of the network and determines the forwarding rules for switches and routers (the data level). Although this centralized control is the main advantage of SDN, it is also a single point of failure. If this main contro...

متن کامل

A Review of Intrusion Detection Defense Solutions Based on Software Defined Network

Most networks without fixed infrastructure are based on cloud computing face various challenges. In recent years, different methods have been used to distribute software defined network to address these challenges. This technology, while having many capabilities, faces some vulnerabilities in the face of some common threats and destructive factors such as distributed Denial of Service. A review...

متن کامل

Radial Basis Neural Network Based Islanding Detection in Distributed Generation

This article presents a Radial Basis Neural Network (RBNN) based islanding detection technique. Islanding detection and prevention is a mandatory requirement for grid-connected distributed generation (DG) systems. Several methods based on passive and active detection scheme have been proposed. While passive schemes have a large non detection zone (NDZ), concern has been raised on active method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11073201